Enabling TB-Class and GB/s-Performance SSDs with HLNAND™

November 2011
Agenda

- Introduction
- HyperLink NAND (HLNAND) Flash Technology
- Signal Integrity
- Summary
NAND Flash History

- Vendor and product differentiation tied mainly to density and reliability
- Reliability decreases with cell size
- Cell scaling nearly at wall
Nearly at Scaling Wall, What’s Next?

• How will Flash producers make a compelling story at the wall?
• Reliability will still play a differentiating role
• Feature enrichment and performance improvements will also help distinguish products and serve product niches
Flash Market Landscape

Established

- Consumer
 - USB Drives
 - Digital Cameras
 - MP3
 - Digital Camcorders
 - GPS
 - Gaming
 - E-Books

Growing

- Mobile
 - Smartphones
 - Featurephones

Emerging

- Computing
 - Netbooks
 - Notebooks
 - Gaming PCs
 - Tablets
 - Enterprise
 - Cloud
Flash-based Emerging Market

Source: SanDisk Feb 2011

Source: Gartner November, 2010; Semiconductor Forecast Worldwide—Forecast Database [SEQS-WW-DB-DATA]
Numbers are preliminary and subject to change
Consumer SSD Market

200+ SSD vendors, but little differentiation
Enterprise-Grade Storage SSDs

Critical Factors:

• Reliability
• Performance/Power (High IOPS & Throughput)
• Scalability
Agenda

- Introduction
- HyperLink NAND (HLNAND) Flash Technology
- Signal Integrity
- Summary
Conventional NAND Flash Interface

- 8 bit, bidirectional, multi-drop bus
- Asynchronous LVTTL signaling up to 40Mb/s/pin
- Speed degradation with more than 4 devices on bus
- Chip Enable (CE) signal required for each device
- Power hungry 3.3V I/O or 1.8V I/O
- Recently DDR NAND (ONFI, Toggle) introduced
Performance and Scalability (Multi-drop Bus)

- Adding more channels:
 - System design complexity
 - Poor Signal Integrity (SI)
 - Higher power consumption
 - ECC/IO overhead per channel
 - Complex PCB design requiring 7-10 layers

- Adding more devices per channel:
 - Compromise between performance and # of devices
HLNAND Topology

- Daisy-chain, point-to-point connection – ring topology
- Cleaner signaling than multi-drop bus
- High speed and no-roll-off with increasing load
Performance and Scalability (HLNAND Ring Topology)

• Higher performance 800MB/s and beyond (compared to 200MB/s & 400MB/s for conventional architecture)
• Virtually unlimited number of devices can be cascaded (higher number of ways per channel)
• Minimizing the number of channels per system
Performance and Scalability
(HLNAND Ring Topology)

• Superior signal integrity (SI)
• No ODT required
• Statistically 50% lower power consumption per channel due to power-saving feature
• Scalable without diminishing performance for Tera Byte-Class & GB/s-Performance SSDs
HLNAND Parts

<table>
<thead>
<tr>
<th></th>
<th>HLNAND 1.0 (DDR266)</th>
<th>HLNAND 2.0 (DDR533/667/800)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/S Sample</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>HLNAND Interface Chip</td>
<td>TSMC 180nm</td>
<td>TSMC 90nm</td>
</tr>
<tr>
<td>NAND Core</td>
<td>32nm/2xnm Async. or DDR-type NAND</td>
<td>32nm/2xnm Async. or DDR-type NAND</td>
</tr>
<tr>
<td>MCP Memory Capacity</td>
<td>128Gb ~ 1Tb (4 ~ 16 die stacked)</td>
<td>128Gb ~ 1Tb (4 ~ 16 die stacked)</td>
</tr>
<tr>
<td>I/O Data Rate</td>
<td>266 MB/s</td>
<td>533/667/800 MB/s</td>
</tr>
<tr>
<td>Package</td>
<td>14mm x 18mm 100-ball BGA</td>
<td>14mm x 18mm 100-ball BGA</td>
</tr>
</tbody>
</table>
HL & HL2 MCP Architecture

- Four-bank architecture
- Fully independent LUN (Logical Unit) operation
HLNAND vs. HLNAND2

HLNAND (HL1)
- Up to DDR-266
- Parallel distributed clock
- 1.8V LVCMOS

HLNAND2 (HL2)
- DDR-533/DDR-667/DDR-800
- Source-synchronous differential clock
- JEDEC 1.2V HSUL_12
256Gb HLNAND E/S in 2011
256Gb HLNAND2 E/S in 2011

• Achieved fully working engineering sample of 256Gb HLNAND2 in Sep 2011
HLNAND: 9-die Stacked View
HLNAND Interface Chip
256Gb HLNAND Performance (DDR266 Grade)

@1.6V and Room Temp.

@1.6V and 70°C

DDR-346 @173MHz

DDR-322 @161MHz
HLNAND2: (8+1)-die Stacked View
HLNAND2 Interface Chip

- Die Size = 5mm x 2mm = 10mm2
256Gb HLNAND2 Performance (DDR800 Grade)

@ Room Temp.

 DDR-834 @417MHz
HLNAND/HLNAND2 Key Features

• DuplexRW™ (QDR533/QDR 1600): Simultaneous Read/Write operations, effective 533MBs/1600MBs data throughput

• Built-in EDC (Error Detection Code), on and off control

• Packet truncation for saving power

• Independent automatic status bus - separate status ring (STI/STO)
DuplexRW™ (QDR Operation)

- Simultaneously write to upstream device while reading from downstream device
- Effectively doubles data throughput
 - HLNAND: doubled to 533MB/s
 - HLNAND2: doubled to 1600MB/s
Built-in EDC (Error Detection Code)

6-byte Command Architecture

<table>
<thead>
<tr>
<th>1st Byte</th>
<th>2nd Byte</th>
<th>3rd Byte</th>
<th>4th Byte</th>
<th>5th Byte</th>
<th>6th Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>OP Code</td>
<td>ADD1</td>
<td>ADD2</td>
<td>ADD3</td>
<td>EDC</td>
</tr>
</tbody>
</table>

6 bytes Command

6th byte EDC Input (user input) → Built-in EDC Comparator

Match? → Yes: Execute Operation

1st byte ~ 5th byte command Input → Built-in EDC Generator

No: No execution
Packet Truncation

Write Data Flow

Target Device for Write

No I/O Switching ➔ No Power Consumption

Read Data Flow

Target Device for Read

No I/O Switching ➔ No Power Consumption
Independent Automatic Status Bus

Separate Status Ring (STI/STO)
Agenda

- Introduction
- HyperLink NAND (HLNAND) Flash Technology
- Signal Integrity
- Summary
HLNAND2 Signal Integrity
(Signal to Ball Assignment)
HLNAND2 Signal Integrity
(General Topology Model)

- 3 Line Model for X-talk
- PCB Impedance = 50 Ω ± 7.5 Ω
- Space of Lines = 4 and 8 mil
- Min. time width of RCV eye window = 0.66UI
- Driver Strength = 50 Ω
- ODT is not required
HLNAND2 SI Simulation

(DDR-800 Point-To-Point, No Termination)
HLNAND2 Test Board
Measured Signal
(CK Output/DQ Signals from 8th Dev. @DDR800)
Measured Data Eye
(DQ Signals from 4th Dev. @DDR800)
Measured Data Eye

(DQ Signals from 8th Dev. @DDR800)
Agenda

- Introduction
- HyperLink NAND (HLNAND) Flash Technology
- Signal Integrity
- Summary
HLNAND Target Market

Established
- Consumer
 - USB Drives
 - Digital Cameras
 - MP3
 - Digital Camcorders
 - GPS
 - Gaming
 - E-Books

Growing
- Mobile
 - Smartphones
 - Featurephones

Emerging
- Computing
 - Netbooks
 - Notebooks
 - Gaming PCs
 - Tablets
 - Enterprise
 - Cloud

Application Specific High Performance Flash Memory
HLNAND Applications

Consumer SSD

Enterprise SSD

Embedded Flash

SSD Modules
HLSSD Development

- Native PCIe Flash Controller (ASIC/FPGA)
- X4 or x8 PCIe Gen2/Gen3
- TB Capacity
- GB/s-Performance
HLNAND Flash Benefits

- Higher Performance
- Longer System Longevity*
- Lower Power Consumption
- High Scalability
- Interface Extensibility
- Advanced Features
- Reduced Overall Cost

* Monolithic HLNAND
Resource for HLNAND Flash
www.HLNAND.com